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2+ complexes 2 were

Di- and tri-methylene-linked Ru(bpy)j
synthesized. The luminescence properties of 2 were compared with
those of its component monomer. In the excited 2 systems, the
intramolecular interaction leading to the enhanced quenching or

the formation of a new triplet excimer was not observed.

Polymeric metal complexes and polyvinylaromatics are fCH-CH fCH CH
of interest in view of mutual interaction, energy <:>
transfer, or electron transfer among chromophores.1'2) A g EN\

Ru(bpy)z
possible use of these materials is to control photochemi-
cal processes in which optical excitation is followed by
a spatially directed energy or electron migration along ]
the polymer chain. We have studied photochemical and H
photophysical properties of Ru(bpy)32+ complexes which 2 ® 3 H 2¢
were covalently incorporated into the vinyl polymer &uzo CHZ - Or RL%
1.1'3‘5) The luminescence properties of 1 showed a close Cy't) «j}%ﬁ»
resemblance to Ru(bpy)32+. In contrast to polyvinyl-
aromatics,s) there was no marked evidence for the energy 2(11:2, 3)
migration and electron exchange between ruthenium complexes on the polymer chain
of 1.1'5) These findings suggest us the interaction between adjacent Ru(bpy)32+
complexes of 1 was not present in the excited state under the steady state
illumination. To ascertain the events which take place in the polymer, we worked
on a covalently linked dimer of Ru(bpy)32+ complex. To our knowledge, there has
been no report on such a ruthenium dimer.
Here we wish to communicate the synthesis of di- and tri-methylene-linked

tris(bipyridine)ruthenium(II) [Ru(bpy)32+] complex dimers 2 and their

luminescence properties. Starting from synthesis of new dimeric ligands 3,6)
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2 were prepared according to Scheme 1. 4,4'-Dimethyl-2,2'-bipyridine was
lithiated by an equimolar amount of lithium diisopropylamide in tetrahydrofuran
and then was treated with the respective bromides at room temperature to yield

3 [3(n=2); Mp 198 °C, 3(n=3); Mp 128 °C]l. 4-Bromoalkyl-4'-methyl-2,2'-
bipyridines were prepared by bromination of the corresponding 4-hydroxyalkyl
derivatives with thionyl bromide in methylene chloride. 2 were obtained by
treatment with Ru(bpy),Cl, in ethanol. 2 were purified by chromatography on
Sephadex LH-20 with an ethanol eluent and was recrystallized from water as a
hexafluorophosphate salt. In TH-NMR spectra of 2(n=2 and 3), we observed two
kinds of chemical shift of methyl groups which were derived from the 1:1 stereo-
isomeric mixture of (A-A, A-A) and (A-A) of ruthenium complex. The possibility of
rotational isomers can be ruled out by the inspection of the temperature
dependency of NMR spectrum. With increasing from 35 to 95 °C, there has not been
observed any significant change in both the chemical shifts and the linewidth of
two methyl signals.

The electronic and redox properties of 2 in the ground state were compared
with those of its compornent monomer, that is, 4,4'-dimethyl-2,2'-bipyridine-
bis(2,2'-bipyridine)ruthenium(II) complex, 4. Redox potentials in acetonitrile
were measured by cyclic voltammetry using a platinum electrode and tetrabutyl-
ammonium perchlorate as a supporting electrolyte. There have been no substantial
differences between 2 and 4 in values of the redox potentials and the peak
separation at various stages as shown in Table 1. Electronic absorption spectra
of 2 in water showed the same maxima and double the molar absorptivity at 455 nm
in comparison with that of 4(Table 2). These results indicated that ruthenium
complexes of 2 did not interact with each other in the ground state.

The luminescence spectra of 2 were recorded with deaerated aqueous solu-
tions at 293 K and showed maxima at 614 nm for 2(n=2) and 616 nm for 2(n=3).

The luminescence intensities of 2 were slightly larger than that
of 4 as shown in Table 2. Luminescence lifetime of 2 in a dearated aqueous

. CH,0
LiN(i-Pr),/, MebpyCH,Li ———MebpyCH,CH,0H

4,4'-Me ,bpy
Se0; >  MebpyCHO —EH: . MebpyCH,OH
MebpyCH,Li
Mebpy(CH, ), {0H — 2> Mebpy(CH ;) {Br 2=~ Mebpy~( CH,),~Mebpy

PF *.4PFc"
Rulbey), Cly _NH. * ~ [Ru(bpy), -Mebpy- (CH,),,-Mebpy-Ru(bpy),)**-4PFg

2(n=2and 3)

Scheme 1. Synthesis of Tris(bipyridine)ruthenium(II) Complex Dimers.
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Table 1. Redox potentialsa) for ruthenium(II) complexes

Ruthenium Oxidation Reduction )
Complex . lstAE b) . lstAE . 2ndA 3rd
172 AEp 172 "Fp By BE,  Ey,, AE
2 (n=2) +1.21 64 -1.38 64 -1.57 anc)-l.Bl nwd
2 (n=3) +1.21 66 -1.38 72 -1.56 nwd =-1.82 nwd
u +1.20 64 -1.38 56 -1.57 62 -1.82 84

a) V vs. SCE in CH,_CN/0.1 M n-Bu,NC10,.
b) Separation (mV) getween anodic and c¢athodic peaks.
c) Anodic peaks are not well-defined.
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solution was measured by the single photon counting method (the excitation wave-

length at 514.5 nm and the pulse width of 300 ps). Both 2(n=2) and 2(n=3)
exhibited a single exponential decay as illustrated in Fig. 1. Careful examina-

tion on the fast decay process has been carried out by the observation of the

decay at a short time range of 50 ns. There was no indication of the fast decay

processes. It is often observable as the concentration quenching in the con-

centrated solution of aromatic chromophors that the quantum yield and lifetime of

emission decrease in comparison with those in a dilute solution.s) When two

aromatic chromophores were linked with a trimethylene chain, the intramolecular
interaction leading to the excimer formation or other annihilation processes

takes place in the excited state in a dilute solution.g) Thomas and a coworker
reported that the decay of *Ru(bpy)32+ in water was dependent on the concentra-
tion of Ru(bpy)32+ in the higher concentration range (0.01-0.1 mol dm'3).10)
The rate constant constant for quenching was estimated to be 5.1x107 mol'1dm
The quenching mechanism was not clear. But it was suggested that very close
contact between *Ru(bpy)32+ and Ru(bpy)32+ is necessary to promote the ground-
state quenching. In the excited 2 systems, we can expect intramolecular quen-

ching caused by the high local concentration of Ru(II) complex in the ground

state around *Ru(II) complex. However, we could not observe the enhanced
Table 2. Absorption and luminescence properties of ruthenium(II)

complexes in water

Absorption Luminescence
Ruthenium A € A Relativea) Lifetimeb)
~fax ——7—7 I ~max . . —_——
Complex nm mol “dm>cm nm intensity us
2 (n=2) 455 27100 614 1.34 0.63
2 (n=3) 455 27800 616 1.10 0.52
4 455 13000 618 1.00 0.49

a) Egcitation at 455 nm and at the same optical density.
b) Single photon counting method. Excitation at 514.5 nm at 20 °C.

35-

1.
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quenching or the formation of a new
triplet excimer., The MLCT(metal-to-
ligand charge transfer) excited state of | wwh%“hw
Ru(bpy)32+ has been suggested to be I
ligand-1lccalized by resonance Raman

spectroscopy.11)

Therefore, we conclude 5[
that the localized formation of the [

excited state of 2 prevented the intra-

molecular interaction leading to the \

200 400 600 800 1000
ground-state quenching and even energy channels
Fig. 1. Luminescence decay for 2(n=3)
transfer. This is also the case for the measured by the single-photon counting
. method at 20 °C: 1.637 ns/channel, [2
ruthenium polymer 1. (n=3)] = 1.25 X 107> mol dm~3 in H,0.

In the case of polyvinylaromatics and their dimer models, the interaction in
the excited state are in general resulted from the cofacial alignment of planar

2+ js a spherical molecule and is charged positively.

aromatic rings. Ru(bpy)3
From the geometric and electrostatic grounds the ground state-excited state
interaction may hardly take place in 1 and 2 systems.

The authors are grateful to Prof. T. Kushida and Dr. S. Kinoshita of

Department of Physics for the measurement of luminescence lifetime.
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